Proceedings of the Jangjeon Mathematical Society www.jangjeon.or.kr
20 (2017), No. 2. pp. 203 - 211 http://dx.doi.org/10.23001/pjms2017.20.2.203

COMPUTING INITIAL DATA FOR DECODING ALGORITHMS
FOR GENERAL AG CODES

KWANKYU LEE

ABSTRACT. An efficient algorithm decoding Goppa’s codes on algebraic curves
over finite fields, called AG codes, appeared only recently. Each instance of
the decoding algorithm for a specific AG code requires some precomputed
initial data about the Riemann-Roch spaces of either functions or differentials
of the given curve. As Magma is particularly good at computing with these
spaces, we present the details of the Magma implementation of the procedure
computing the initial data for the decoding algorithm.

1. INTRODUCTION

Let X be a smooth geometrically irreducible projective curve defined over a finite
field IF of genus g. Let F(X) and Qx denote the function field and the module of
differentials of X respectively. Let Py, Ps,..., P, be distinct rational points on X,
and D= P, + P, +---+ P,. Let G be an arbitrary divisor on X, whose support
does not contain the rational points. Recall that £(G) = {f e F(X) | (f)+ G > 0}
and Q(G) = {w € Qx | (w) > G}. Goppa [7] defined two kinds of error correcting
codes

Ce(D,G) ={(f(P1), f(Pa),.... f(Pn)) | f € L(G)}

and
Cq(D,G) = {(resp, (w), resp, (w),...,resp, (w)) | w € (=D + G)},

which are respectively called an evaluation AG code and a differential AG code. As
well known, they are dual to each other.

AG codes provide series of codes with large minimum distances surpassing the
Gilbert-Varshamov bound [14]. Research on the dimension and the minimum dis-
tance of AG codes has deep connections with important problems of discrete math-
ematics, number theory and algebraic geometry [13]. Moreover, with the projective
line taken for X, the class of AG codes and their subfield subcodes includes Reed-
Solomon codes and BCH codes that have been used in various communication and
storage devices. Goppa codes used in the cryptosystem proposed by McEliece are
subfield subcodes of differential AG codes on the projective line. Generalizing de-
coding algorithms for Reed-Solomon and BCH codes, efficient decoding algorithms

2010 Mathematics Subject Classification. Primary 94B35, 94B27, 68W30.

Key words and phrases. Decoding algorithm, Algebraic Geometry codes, Algebraic curves.

This is an expanded version of the paper presented in the International Congress on Mathe-
matical Software 2014, whose extended abstract was published in the conference proceeding [8].
The main result only appears in the present paper, in Section 3.

K. Lee is with the Department of Mathematics Education, Chosun University, Gwangju 61452,
Korea (e-mail: kwankyu@chosun.ac.kr). This study was supported by research fund from Chosun
University, 2016.

204

K. Lee

for a subclass of AG codes have been devised. Some AG codes are strong candidates
to replace Reed-Solomon codes. AG codes and their subfield subcodes on curves of
positive genus are considered for the McEliece cryptosystem and for secret sharing
schemes. For research on and practice of these applications, availability of efficient
decoding algorithms for AG codes is essential.

Then it is unfortunate to find that decoding algorithms for AG codes are cur-
rently very poorly available in computer algebra systems. In Singular and Magma,
Skorobogatov and Vladut’s basic algorithm for general differential AG codes [14]
is implemented, but this is almost all one can find in public. The basic algorithm
requires as input another divisor G; such that the supports of G; and D are disjoint
and

(1) deg(G1) < deg(G) —29g+2—t and dimp(L(G1)) >t

to correct all errors of weight < ¢. Though it is known that G; exists for all
t < (d*—1-g)/2, where d* = deg G — 2g + 2 is the Goppa bound on the minimum
distance or the designed distance of Cq (D, G), users of Singular and Magma have
to provide G1 to run the basic algorithm [3, 2].

However, in the research literature, actually there have been much more advances
on the problem of decoding AG codes. By extensive works of Feng, Rao, Sakata and
many others, a fast decoding algorithm that corrects errors of weight less than half of
d* for one-point differential AG codes, in which G = m(@), was already established
in 1990’s [6, 11]. Moreover, decoding algorithms for multi-point differential and
evaluation AG codes have been proposed by Duursma [4], Beelen and Hgholdt [1],
and Sakata and Fujisawa [12]. Unfortunately these algorithms were never available
in public on computer algebra systems. This situation may be due to that none of
these algorithms are fast, simple to implement, and easy to apply for general AG
codes.

Recently, improving the current situation, there appeared a fast decoding al-
gorithm for general evaluation and differential AG codes [10, 9] that can correct
up to half of their designed distances.! This algorithm is very simple and easy to
implement. Indeed all heavy computations are done just to provide initial data to
the algorithm, and for each received vector, the algorithm performs simple iterative
procedure to recover message symbols. Computations of the initial data are all
ultimately based on computations of a basis of the Riemann-Roch space £(G) or
Q(G) for any divisor G. As Magma has very nice facilities for computing with these
spaces, the decoding algorithm can be most easily implemented in Magma. In the
next section, we show a Magma session with a decoding example from the Magma
documentation.

2. EXAMPLE SESSION

The following Magma scripts construct [23, 14, 7] differential AG code C on the
Klein quartic, of genus g = 3, defined over Fg on the projective plane.
> F<a> := GF(8);
> PS<x,y,z> := ProjectiveSpace(F, 2);
> Cv := Curve(PS, x"3%y + y~3*z + x*z"3);
> Pl := Places(Cv, 1); // rational points

IPrecisely speaking, general AG codes mean multi-point AG codes, which allows arbitrary G
but requires a rational point @ not in the support of D.

Computing initial data for decoding algorithms for general AG codes 205

Place(Cv![0,1,0]1);

[P1[il: i in [1..#P1] | P1[i] ne Q1;
11*Q;

AGDualCode (P, G);

With the rational point @ = [0 : 1 : 0] on the curve, the divisor G; = 4Q satisfies
the condition (1) for t = 1. Thus the Magma intrinsic AGDecode, which implements
Skorobogatov and Vladut’s basic algorithm, can correct arbitrary errors of weight
1.

v := Random(C);

vV V V V
aavo
i

>
> rec_vec := v;

> rec_vec[Random(1,Length(C))] +:= Random(F);
> res := AGDecode(C, rec_vec, 4*Q);

> res eq V;

true

However, observe that as the minimum distance of C is 7, the code has capability
of correcting unambiguously errors of weight at most 3. So the decoding algorithm
in Magma fails to exert the full potential of the code.

Now we turn to the new Magma intrinsic DifferentialAGCode, which imple-
ments the decoding algorithm for differential AG codes in [9].

> D:=&+P;

> code:=DifferentialAGCode(D,G,Q);
> code eq C;

true

> code ‘DecodingRadius;

3

The last output indicates that the code is capable of correcting errors of weight up
to half of the actual minimum distance of C.

> res := DecodeAGCode(code,rec_vec);
> res eq V;

true

rec_vec[Random(1,Length(C))] +:
rec_vec[Random(1,Length(C))] +:
Distance(rec_vec, v);

Random(F) ;
Random(F) ;

res := DecodeAGCode(code,rec_vec);

There is also new Magama intrinsic EvaluationAGCode, which implements the
new decoding algorithm for evaluation AG code in [10].

> ecode := EvaluationAGCode(D,G,Q);
> Dual(ecode) eq code;

true

> ecode ‘DecodingRadius;

5

> MinimumDistance(ecode) ;

12

206

K. Lee

Note that ecode is a [23,9, 12] evaluation AG code, dual of code, and can correct
errors of weight up to 5.

3. IMPLEMENTATION DETAILS

The details of the decoding algorithm implemented in the Magma intrinsic
EvaluationAGCode is fully described in [10]. The efficiency and simplicity of the
decoding algorithm owes largely to the initial data precomputed before actual de-
coding procedure. The data are just polynomials over the finite field F representing
elements of Riemann-Roch spaces. This polynomial representation is made possible
by so-called Apéry systems on the function field. In this section, we explain how to
compute the Apéry systems and the initial data for the decoding algorithm. We use
the [23,9, 12] evaluation AG code in the previous section as an example throughout
this section.

First we recall some definitions from [10]. Let

R=|]JL(sQ) CF(X).
s=0
For f € R, let p(f) = —vq(f), that is the smallest s such that f € £(sQ). The
Weierstrass semigroup at @) is then

A= {p(f) | fER}={)\0,)\1,>\2,...} CZZO~

It is well known that A is a numerical semigroup whose number of gaps is the genus
g of X. The nonnegative integers in A are called nongaps. Let v be the smallest
positive nongap, and let p(z) =~ for some = € R.

Recall that for divisor G, the Magma command Basis(G) computes a basis of
L(G) and Dimension(G) computes the dimension of £(G). These commands are
used to compute vy and x with p(x) = v in the following scripts.

function get_gamma()
s:=1;
while true do
if Dimension(s*Q) gt 1 then

return s;
end if;
s:=s+1;

end while;
end function;
gamma :=get_gamma() ;

function get_xRQO)
for b in Basis(gammax*Q) do
if Valuation(b,Q) eq -gamma then
return b;
end if;
end for;
end function;
xR:=get_xR(O);

For our example, we get

Computing initial data for decoding algorithms for general AG codes

> gamma;
3

> xR;

X

where X and Y denote generating elements of the function field of X, which is
denoted by FF.

For each 0 < i < 7, let a; be the smallest nongap such that a; = ¢ (mod ~) and
p(y;) = a; for some y; € R. Then we can show that every element of R can be
written as a unique F-linear combination of the monomials {bkaZ |k>0,0<1i<
~v}. The set {y; | 0 < i < 7} is called an Apéry system of R. The following scripts
compute the Apéry system of R.

function apery_RQ)
s:=0;
dR:=[0:1 in [1..gammall;
yR:=[FF|0:1 in [1..gammal];
found:=[false:i in [1..gammall;
num:=0;
while num 1t gamma do
B:=Basis(s*Q);
g:=0;
for b in B do
if Valuation(b,Q) eq -s then
g:=b;
break;
end if;
end for;
r:=(s mod gamma)+1;
if g ne 0 and not found[r] then
dR[r] :=s;
yR[r] :=g;
found[r] :=true;
num+:=1;
end if;
s:=s+1;
end while;
return dR,yR;
end function;
dR,yR:=apery_RQ);

For our example, we get

> dR;

[0, 7,5]

> yR;

[
1,
X*xY"2,
X*Y

207

208

K. Lee

Let

R= U (sQ + G) C F(X),
which is clearly a module over R. For f € R, let 6(f) = —vo(f) — vo(G), that is
also the smallest integer s such that f € £L(sQ + G). Let

A= {5(f) | fe R} = {30751,82,...} C szdeg(Gy

Note that A + A = A, and in this sense A is a numerical A-module. The integers
in A are called nongaps. For each 0 < i < +, there exists the smallest nongap b; of
A such that b; =i (mod ~) and 6(3;) = b; for some g; € R. We can still show that
{7:10<i< 'y} forms a basis of R as a free module of rank v over F[x]. For s € A,
define g = 2*§; for i = s mod v and k = (s — b;)/y > 0. Then §(@,) = s. Thus
{@s | s € A} is a basis of R over F, members of which are called the monomials of
R. The set {7; | 0 <i < ~} is called the Apéry system of R.

As the definitions are similar, the computation of the Apéry system of R is
almost identical with that of R. So we omit the scripts for the computation. For
our example, we get the following output from the scripts.

> dRbar;
[-6, -11, -4]
> yRbar;
L
X*Y,
1,
X*Y"2
]
>

Now that the Apéry system of R is available, an element f of R can be represented as
a vector (co,c1,...,cy—1) € Fla]7 if f = ZZ o ¢iZi- The following script computes
the vector form of the given f.

function vec_form(f)
r:=f;
1:=[W|0:i in [1..gammall;
while r ne 0 do
s:=-Valuation(r,Q)-Valuation(G,Q);
e:=exponents(s);
mon:=xR~e[1]*yRbar[e[2]+1];
c:=Evaluate (r/mon,Q) ;
1[e[2]+1]+:=c*x"e[1];
r-:=c*mon;
end while;
return Vector(l);
end function;

where W denotes the polynomial ring F[z] of Magma with variable x, with which
the decoding algorithm works.
The evaluation map

ev:R—=>F", o (p(P1),o(P),...,0(P,))

Computing initial data for decoding algorithms for general AG codes

is linear over F. The evaluation AG code is now simply C (D, G) = ev(L(G)), that
is the image of £(G) under the evaluation map. The map ev is surjective onto F".
Let h; € R be such that ev(h;) is the ith element of the standard basis of F”. Let
J be the kernel of ev. Note that J is a submodule of R over R, and also over F[x].
Let {n; | 0 <i <~} be a Grobner basis of J over F[z] such that deg;(1t(n;)) = .
We may call h; Lagrange basis polynomials as their F-linear combinations yield
functions in R that correspond to vectors of F” under ev. The Lagrange basis
polynomials and the Grobner basis of J are essential initial data supplied to the
decoding algorithm before actual decoding processing. To compute them, we deploy
an FGLM-like algorithm [5].

function get_eta_basis()

basis:=[];
found:=[false:i in [1..gammal];
s:=s0;

mat:=Matrix(ev_mon(s));
delta:=[exponents(s)];
num:=0;
while num 1t gamma do
s:=next(s);
e:=exponents(s);
if not found[e[2]+1] then
v:=ev_mon(s) ;
ans,sol:=IsConsistent (mat,v);
if ans then
gen:=[W!0 : i in [1..gammal];
for i in [1..#deltal do
gen[deltal[i] [2]1+1]+:=-s0l[i]*x"deltal[i] [1];
end for;
genl[e[2]+1]+:=x"e[1];
basis[e[2]+1] :=Vector(gen) ;
found[e[2]+1] :=true;
num+:=1;
else
mat:=VerticalJoin(mat,Matrix(v));
Append(~delta,e);
end if;
end if;
end while;

vecs:=[];
matinv:=mat~-1;
for i in [1..n] do
h:=[W!0 : i in [1..gammal];
for j in [1..n] do
h[deltalj,2]+1]+:=matinv[i, jl*x"deltalj,1];
end for;
vecs[i] :=Vector(h);
end for;

209

210

K. Lee

return basis,vecs;
end function;
eta_vecs,hvecs:=get_eta_basis();

where sO denotes the smallest nongap sy in A, the command ev_mon(s) gives
the vector ev(@s), the command next(s) gives the nongap subsequent to s in A,
the command exponents(s) gives the pair (k,i) satisfying vk + b; = s, that is
x*g; = @,. For our example, we get

> eta_vecs;

L
(x°7+1 0 0),
(0 x°8 + x 0,
(0 0 x°8 + x)
]
> hvecs;
[
(0 x°7+1 X7 + 1),
(0 0 x"7 + 1),
]

Thus o = (z7+1)go, m = (¢*+2)§1, 2 = (25+2)F2 and hy = (7 +1)g1+(2"+1)72,
and so forth.

The decoding algorithm for differential AG codes, implemented in the Magma
intrinsic DifferentialAGCode, is a mirror image of its companion algorithm in the
sense that the algorithmic structures are the same but the underlying mathematical
objects are different. This simply reflects the fact that the space Q(—D + G) of
differentials and the residue map res defines the differential AG code while the space
L(G) and the evaluation map ev defines the evaluation AG code. Thus instead of

R, we define

W= |J Q-D+G-5Q) cay,

s§=—00

which is again a module over R, and define the residue map
res: W — F", w s (resp, (w),resp, (w), ..., resp, (w))

which is linear over F. The rest of definitions and computations regarding W and res
go in parallel with that of R and ev. So we leave the reader with the task of writing
Magma scripts corresponding to those presented previously. For an exposition and
analysis about the decoding algorithm itself, see [9].

ACKNOWLEDGEMENT

The author would like to express his gratitude towards Professor Dae San Kim,
who as a teacher and advisor shaped the author’s career in mathematics. This
paper is dedicated to him for his honorable retirement from Sogang University in
Seoul, August of 2016.

Computing initial data for decoding algorithms for general AG codes

REFERENCES

[1] Peter Beelen and Tom Hgholdt. The decoding of algebraic geometry codes. In Advances in

algebraic geometry codes, volume 5 of Ser. Coding Theory Cryptol., pages 49-98. World Sci.
Publ., Hackensack, NJ, 2008.

[2] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user

language. J. Symbolic Comput., 24(3-4):235-265, 1997.

[3] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schonemann. SINGULAR

3-1-6 — A computer algebra system for polynomial computations. http://www.singular.
uni-kl.de, 2012.

[4] Iwan M. Duursma. Majority coset decoding. IEEE Trans. Inf. Theory, 39(3):1067-1070, 1993.

| J. C. Faugere, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional
Grobner bases by change of ordering. J. Symbolic Comput., 16(4):329-344, 1993.

[6] Gui Liang Feng and T. T. N. Rao. Decoding algebraic-geometric codes up to the designed

minimum distance. IEEE Trans. Inf. Theory, 39(1):37-45, 1993.

[7] V. D. Goppa. Codes on algebraic curves. Sov. Math. Dokl., 24(1):170-172, 1981.
[8] Kwankyu Lee. Magma implementation of decoding algorithms for general algebraic geometry

codes. In International Congress on Mathematical Software, pages 119-123. Springer, 2014.

| Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communica-
tions, 10(2):307-319, 2016.

| Kwankyu Lee, Maria Bras-Amorés, and Michael E. O’Sullivan. Unique decoding of general
AG codes. IEEE Trans. Inf. Theory, 60(4):2038-2053, 2014.

] S. Sakata, H. E. Jensen, and T. Hgholdt. Generalized Berlekamp-Massey decoding of
algebraic-geometric codes up to half the Feng-Rao bound. [EEE Trans. Inf. Theory,
41(6):1762-1768, 1995.

[12] Shojiro Sakata and Masaya Fujisawa. Fast decoding of multipoint codes from algebraic curves.

IEEE Trans. Inf. Theory, 60(4):2054-2063, 2014.

[13] Serguei A. Stepanov. Codes on Algebraic Curves. Springer, 1999.

(14

Henning Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, second edition,
2009.

DEPARTMENT OF MATHEMATICS EDUCATION, CHOSUN UNIVERSITY, GWANGJU 61452, KOREA
E-mail address: kwankyu@chosun.ac.kr

211

